ভূপৃষ্ঠৰ পৰা কোনো এটা বস্তু অথবা কণা (প্ৰক্ষেপ্য) বায়ুমণ্ডললৈ প্ৰক্ষেপ কৰিলে কেৱল মহাকৰ্ষণৰ প্ৰভাৱত (বায়ুৰ ৰোধৰ প্ৰভাৱ নগণ্য বুলি ধৰা হৈছে) প্ৰক্ষেপ্যটোৱে বক্ৰৰেখাৰ পথেৰে গতি কৰে আৰু এই গতিকেই প্ৰক্ষেপ্য গতি (ইংৰাজী: Projectile motion) বুলি কোৱা হয়।

অধিবৃত্তাকাৰ পথত প্ৰক্ষেপ কৰা প্ৰক্ষেপ্য এটাৰ প্ৰাৰম্ভিক বেগৰ উপাংশসমূহ

প্ৰাৰম্ভিক বেগ

সম্পাদনা কৰক

ধৰা হ'ল, এটা প্ৰক্ষেপ্য   প্ৰাৰম্ভিক বেগেৰে বায়ুমণ্ডললৈ প্ৰক্ষেপ কৰা হৈছে যাক অনুভূমিক উপাংশ আৰু উলম্ব উপাংশৰ যোগফল হিচাপে প্ৰকাশ কৰিব পাৰি, অৰ্থাৎ

 

প্ৰাৰম্ভিক প্ৰক্ষেপ কোণ ( ) জনা থাকিলে অনুভূমিক আৰু উলম্ব দুয়োটা উপাংশৰ মান পোৱা যাব, অৰ্থাৎ   আৰু  

প্ৰক্ষেপ্য গতিৰ গতিবিজ্ঞান ৰাশি

সম্পাদনা কৰক

প্ৰক্ষেপ্য গতিত অনুভূমিক গতি আৰু উলম্ব গতি পৰস্পৰে পৰস্পৰৰ স্বাধীন অৰ্থাৎ এটাৰ প্ৰভাৱৰ পৰা আনটো মুক্ত। এইটোৱেই ১৯৩৮ চনত গেলিলিঅ’ গেলিলিয়ে স্থাপন কৰা সংযুক্ত গতিৰ নীতি।[1] প্ৰক্ষেপ্য গতিৰ গতিপথ অধিবৃত্তাকাৰ বুলি প্ৰতিপন্ন কৰিবলৈ গেলিলিয়ে এই নীতি ব্যৱহাৰ কৰিছিল।[2]

যিহেতু উলম্ব দিশতহে কেৱল ত্বৰণ আছে, গতিকে অনুভূমিক দিশত বেগ ধ্ৰুৱক হ’ব আৰু ইয়াৰ মান হ'ব   । এটা বস্তু অথবা কণা মহাকৰ্ষণৰ প্ৰভাৱত তললৈ মুক্তভাবে যি গতিৰে নামি আহে তাক প্ৰক্ষেপ্যটোৰ উলম্ব গতি বুলি কোৱা হয়। ইয়াত ত্বৰণ ধ্ৰুৱক আৰু ইয়াক   ৰে সূচোৱা হয়।[টোকা 1]   আৰু   হ’ল ত্বৰণৰ উপাংশ।

প্ৰক্ষেপ্যটো গতি কৰোঁতে ইয়াৰ বেগৰ অনুভূমিক উপাংশৰ কোনো সলনি নহয়। কিন্তু ইয়াৰ বেগৰ উলম্ব উপাংশ ৰৈখিকভাবে সলনি হয়[টোকা 2] কিয়নো মাধ্যাকৰ্ষণিক ত্বৰণ ধ্ৰুৱক।

যিকোনো সময়    আৰু   দিশত বেগৰ উপাংশসমূহ তলত উল্লেখ কৰা হ'ল:

 ,  

বেগৰ মান (পাইথাগোৰাছৰ উপপাদ্য অনুসৰি):

 

 
অধিবৃত্তাকাৰ পথত প্ৰক্ষেপ কৰা প্ৰক্ষেপ্য এটাৰ সৰণ আৰু স্থানাংক

যিকোনো সময়   ত প্ৰক্ষেপ্যটোৰ অনুভূমিক আৰু উলম্ব সৰণ হ'ব:

 ,  

প্ৰক্ষেপ্যটোৰ লব্ধ সৰণৰ মান হ'ব:

 

ধৰা হ’ল,  ,  

যদি ওপৰোক্ত দুয়োটা সমীকৰণৰ পৰা   আঁতৰোৱা হয়, তেন্তে নিম্নোক্ত সমীকৰণটো পোৱা যাব:

 

উক্ত সমীকৰণটোত  ,   আৰু   ধ্ৰুৱক, গতিকে ইয়াক তলত দিয়া ধৰণেও লিখিব পাৰি:

 , য’ত   আৰু   ধ্ৰুৱক। এইটোৱেই অধিবৃত্তৰ সমীকৰণ, এতেকে প্ৰক্ষেপ্যটো গতি কৰা বক্ৰৰেখাৰ পথটো অধিবৃত্তাকাৰ। অধিবৃত্তটোৰ অক্ষদাল উলম্ব।

যদি প্ৰক্ষেপ্যটোৰ অৱস্থান ( ,  ) আৰু প্ৰক্ষেপ কোণ (  বা  ) জনা থাকে, তেন্তে ওপৰত উল্লেখিত অধিবৃত্তৰ সমীকৰণটোৰ পৰা   সমাধান কৰি প্ৰাৰম্ভিক বেগ নিৰ্ণয় কৰিব পৰা যাব।

অধিবৃত্তৰ সমীকৰণটো সমাধান কৰি পোৱা প্ৰাৰম্ভিক বেগৰ সমীকৰণটো তলত উল্লেখ কৰা হ'ল:

 

প্ৰক্ষেপ্য এটাই বায়ুমণ্ডলত বিচৰণ কৰা মুঠ সময়ক প্ৰক্ষেপ্যটোৰ উৰণ কাল বুলি কোৱা হয়।

 

উৰণৰ পাছত প্ৰক্ষেপ্যটো অনুভূমিক অক্ষলৈ (x-axis) ঘূৰি আহে, গতিকে  

       

[টোকা: ইয়াত বায়ুৰ ৰোধ উপেক্ষা কৰা হৈছে।]

প্ৰক্ষেপ্যৰ সৰ্বোচ্চ উচ্চতা

সম্পাদনা কৰক
 
প্ৰক্ষেপ্য এটাৰ সৰ্বোচ্চ উচ্চতা

প্ৰক্ষেপ্য এটাই ভূপৃষ্ঠৰ পৰা সৰ্বোচ্চ যিমান ওপৰলৈ যাব পাৰে, তাক প্ৰক্ষেপ্য গতিৰ শিখৰ হিচাপে জনা যায়। ইয়াক প্ৰক্ষেপ্যৰ সৰ্বোচ্চ উচ্চতা বুলিও কোৱা হয়।   হোৱালৈকে উচ্চতা বৃদ্ধি টিকি থাকিব, অৰ্থাৎ

 

সৰ্বোচ্চ উচ্চতা   পাবলৈ লগা সময়:

 

প্ৰক্ষেপ্যৰ সৰ্বোচ্চ উচ্চতাৰ উলম্ব সৰণৰ পৰা:

   

অনুভূমিক পৰিসৰ আৰু সৰ্বোচ্চ উচ্চতাৰ মাজৰ সম্পৰ্ক

সম্পাদনা কৰক

অনুভূমিক পৰিসৰ   আৰু সৰ্বোচ্চ উচ্চতাৰ   মাজৰ সম্পৰ্কটো হ'ল:

 

প্ৰক্ষেপ্য এটাৰ সৰ্বোচ্চ উচ্চতা:   (প্ৰথম সমীকৰণ)

প্ৰক্ষেপ্য এটাৰ অনুভূমিক পৰিসৰ:   (দ্বিতীয় সমীকৰণ)

এতিয়া প্ৰথম সমীকৰণক দ্বিতীয় সমীকৰণেৰে হৰণ কৰিলে পোৱা যাব:

  ×      

প্ৰক্ষেপ্য এটাৰ সৰ্বোচ্চ দূৰত্ব

সম্পাদনা কৰক

প্ৰক্ষেপ্য এটাৰ পৰিসৰ আৰু সৰ্বোচ্চ উচ্চতা ইয়াৰ ভৰৰ ওপৰত নিৰ্ভৰশীল নহয়। এতেকে একে বেগ আৰু দিশ বিশিষ্ট সকলোবোৰ প্ৰক্ষেপ্যৰ পৰিসৰ আৰু সৰ্বোচ্চ উচ্চতা সমান হয়।

  1.   মাধ্যাকৰ্ষণিক ত্বৰণ আৰু ভূপৃষ্ঠৰ ওচৰত ইয়াৰ মান  
  2. হ্ৰাস হয় যেতিয়া প্ৰক্ষেপ্যটো ওপৰৰ ফালে যায় আৰু বৃদ্ধি হয় যেতিয়া প্ৰক্ষেপ্যটো তলৰ ফালে যায়।

তথ্য সূত্ৰ

সম্পাদনা কৰক
  1. Galileo Galilei, Two New Sciences, Leiden, 1638, p. 249
  2. David D. Nolte, Galileo Unbound, Oxford University Press, pp. 39-63