ঘাতাংক
ঘাতাংক (ইংৰাজী: Logarithm) হৈছে গণিতৰ ক্ষেত্ৰ খনৰ সূচকৰ বিপৰীত প্ৰক্ৰিয়া। অৰ্থাৎ কোনো সংখ্যাৰ ঘাতাংক হ'ল সেই সূচক যাক এটি নিৰ্ধাৰিত মানৰ, (ভিত্তি) ঘাত হিচাপে উন্নীত কৰিলে প্ৰথমোক্ত সংখ্যাটি পোৱা যায়। সাধাৰণ ক্ষেত্ৰত ঘাতাংকই এটা সংখ্যা (ভিত্তি) কিমানবাৰ গুণ কৰা হ'ল সেয়া গণনা কৰে। উদাহৰণস্বৰূপ, ১০০০ৰ ১০ ভিত্তিক ঘাতাংক বা লগৰ মান ৩, ইয়াৰ অৰ্থ হ'ল ১০ ৰ ঘাত ৩ লৈ উন্নীত কৰিলে ১০০০ পোৱা যায় (১০০০ = ১০ × ১০ × ১০ = ১০৩)। ইয়াত ১০ সংখ্যাটি ৩ বাৰ গুণ কৰিলে ১০০০ পোৱা যায়। আকৌ সাধাৰণভাবে কোৱা হয়, কোনো ধনাত্মক প্ৰকৃত সংখ্যাক যিকোনো প্ৰকৃত ঘাতলৈ উন্নীত কৰিলে সকলোসময়তে ধনাত্মক ফল পোৱা যায়, সূত্ৰ মতে যদি কোনো দুটি ধনাত্মক প্ৰকৃত সংখ্যা b আৰু x ৰ ঘাতাংক নিৰ্ণয় কৰা যায় য'ত b সংখ্যাটি ১ৰ সমান নহয়। xৰ b ভিত্তিক ঘাতাংক প্ৰকাশ এনেকৈ কৰা হয়- logb(x), আৰু ইয়াৰ মান এটা অন্য প্ৰকৃত সংখ্যা yৰ ক্ষেত্ৰত-
উদাহৰণস্বৰূপ, যিহেতু ৬৪ = ২৬, তেতিয়া আমি পাম- log২(৬৪) = ৬, ১০ ভিত্তিক ঘাতাংক (অৰ্থাৎ b = ১০)ক কোৱা হয় সাধাৰণ ঘাতাংক, বিজ্ঞান আৰু প্ৰকৌশল বিদ্যাত ইয়াৰ বহুল ব্যৱহাৰ হয়। প্ৰাকৃতিক ঘাতাংকৰ ভিত্তি হ'ল এটা গাণিতিক ধ্ৰৱক E (≈ ২.৭১৮); গণিত আৰু পদাৰ্থবিদ্যাত ইয়াৰ বিস্তৃত ব্যৱহাৰ হৈছে। দ্বিমিক ঘাতাংকৰ ভিত্তি হিচাপে ব্যৱহৃত হয় ২ (অৰ্থাৎ b = ২) আৰু ইয়াক সাধাৰণভাবে কম্পিউটাৰ বিজ্ঞানটো ব্যৱহাৰ কৰা হয়।
ইতিহাস
সম্পাদনা কৰকগণনা সহজ কৰাৰ বাবে সপ্তদশ শতাব্দীৰ আৰম্ভণিতে জন নেপিয়াৰে ঘাতাংকৰ সূচনা কৰিছিল।[2] স্লাইড ৰুল আৰু লগ সাৰণি ব্যৱহাৰ কৰি সহজে গণনাৰ বাবে নাবিক, বৈজ্ঞানিক, প্ৰকৌশলী আদি ব্যক্তিত্বই দ্ৰুত ভাৱে এই সমূহ গ্ৰহণ কৰে।
বিৱৰণ
সম্পাদনা কৰকবিৰক্তিকৰ বহুসাংখ্যিক পূৰণৰ ধাপসমূহ ঘাতাংকৰ নিয়মত এটা সৰল যোগত পৰিণত হয়। ঘাতাংকৰ নিয়মানুযায়ী সংখ্যাসমূহৰ গুণফলৰ ঘাতাংক মান সংখ্যাসমূহৰ একক ঘাতাংকৰ মানৰ যোগফল। অৰ্থাৎ
ইয়াত b, x আৰু y সকলো ধনাত্মক আৰু b ≠ 1. বৰ্তমানৰ ঘাতাংকৰ ধাৰণাটি আহিছে লিঅ'নাৰ্ড আইলাৰৰ পৰা যি অষ্টাদশ শতাব্দীত ঘাতাংক সূচক আপেক্ষকৰ সূচক ফাংচনৰ সৈতে সম্পৰ্কযুক্ত কৰিছিল। যিকোন জটিল সংখ্যাক A.eiø, A≥0, আকাৰে প্ৰকাশ কৰা যায়। এই ধাৰণাৰ পৰাই ঋণাত্মক সংখ্যা আৰু জটিল সংখ্যাৰ ঘাতাংকক সংজ্ঞায়িত কৰা যায়। যদি z এটি জটিল সংখ্যা আৰু ইয়াৰ মডুলাচ্ |z|, আৰ্গুমেণ্ট ø হয় তেন্তে ln(z)=ln|z| +iø, ইয়াত এটা জটিল সংখ্যাৰ অসংখ্য আৰ্গুমেণ্ট থাকে। কোৱা হয় যে কোনো সংখ্যাৰ ঘাতাংকৰ অসংখ্য মান থাকিবা পাৰে। সেয়ে হ'লেও ইয়াত মুখ্য মান কেৱল এটাই, যেনে, z যদি ধনাত্মক সংখ্যা হয়, তেন্তে |z|=z, মুখ্য আৰ্গুমেণ্ট ø=0, সেয়ে ইয়াত স্বাভাৱিক ঘাতাংকৰ মুখ্য মান ln(z).
ঘাতাংকৰ সূত্ৰ
সম্পাদনা কৰকসূত্ৰ | উদাহৰণ | |
---|---|---|
পূৰণ | ||
ভাগফল | ||
ঘাট | ||
মূল |
তথ্যসূত্ৰ
সম্পাদনা কৰক- ↑ Kate, S.K.; Bhapkar, H.R. (2009), Basics Of Mathematics, প্ৰকাশক Pune: Technical Publications, ISBN 978-81-8431-755-8, https://books.google.com/books?id=v4R0GSJtEQ4C&pg=PA1[সংযোগবিহীন উৎস], chapter 1
- ↑ Hobson, Ernest William (1914). John Napier and the invention of logarithms, 1614; a lecture. University of California Libraries. Cambridge : University Press. http://archive.org/details/johnnapierinvent00hobsiala.