হৰণ (গণিত)
হৰণ (÷) হ’ল এটি পাটীগণিতীয় তথা বীজগণিতীয় ক্ৰিয়া (operation)। যদিহে cৰ bগুণ a ৰ সমান হয়, তেন্তে:
ইয়াত b যদি অশূন্য হয়, তেন্তে a ক b ৰে হৰণ কৰা বুলিলে c পোৱা যায় আৰু ইয়াক তলত দিয়া ধৰণে লিখা হয়:
- a ÷ b = c।
উদাহৰণস্বৰূপে,
- 6 ÷ 3 = 2 ,
কাৰণ
- 6 = 3 × 2।
a ÷ b = c ৰাশিটোত, a ক ভাজ্য বা লৱ, b ক ভাজক বা হৰ আৰু c ক ভাগফল বোলা হয়।
হৰণৰ লগত দুটা পৃথক অথচ পৰস্পৰ সম্পৰ্কীত ধাৰণা যুক্ত হৈ আছে: বিভাজন'' (Partitioning) আৰু ভাগফল (Quotative)। a মাত্ৰাৰ এটা থুপক b সংখ্যক সমান সমান ভাগত ভাগ কৰিলে একোটা ভাগৰ মাত্ৰা যদি c হয়, তেন্তে a ৰ পৰা b ৰ হৰণফল হ’ব c। আৰু a মাত্ৰাৰ এটা থুপক c মাত্ৰাৰ থুপলৈ ভাগ কৰিলে থুপৰ সংখ্যা b হ’লে a ৰ পৰা c ৰ হৰণফল হ’ব b।[1]
হৰণৰ পৰা ভগ্নাংশৰ ধাৰণা লাভ কৰা হয়। অখণ্ড সংখ্যাৰ সংহতিটো যোগ, বিয়োগ আৰু পূৰণৰ দৰে হৰণৰ সাপেক্ষে আৱদ্ধ (closed) নহয়। এটা অখণ্ড সংখ্যাৰ পৰা আন এটা অখণ্ড সংখ্যা হৰণ কৰিলে কেতিয়াবা একোটা ভাগশেষ (বা বাকী) পোৱা যায়। এই ভাগশেষক হৰণৰ কৰিবৰ বাবে সংখ্যা প্ৰণালীৰ ধাৰণাৰ প্ৰসাৰণ ঘটাই ভগ্নাংশ বা পৰিমেয় সংখ্যাৰ ধাৰণা যুক্ত কৰা হয়।
লিখাৰ নিয়ম
সম্পাদনা কৰকহৰণ-প্ৰক্ৰিয়াক সাধাৰণতে, এডাল অনুভূমিক ৰেখাখণ্ড লৈ তাৰ ওপৰত ভাজ্য আৰু তলত ভাজকটো লিখি প্ৰকাশ কৰা হয়। এই ৰেখাখণ্ডক vinculum বা fraction bar বোলা হয়। যেনে: a ক b ৰে হৰণ কৰিলে লিখা হয়:
ইয়াক "a হৰণ b" (ইংৰাজীত: "a divided by b", "a by b" বা "a over b") বুলি পঢ়া হয়। এডাল সোঁ পিনে হাউলা দণ্ড (ইং: slash) ৰ বাওঁফালে ভাজ্য আৰু সোঁফালে ভাজকটো লিখিও ইয়াক বুজোৱা হয়। যেনে:
This is the usual way to specify division in most computer programming languages since it can easily be typed as a simple sequence of ASCII characters.
সৰল ভগ্নাংশসমূহ লিখাৰ পদ্ধতি ব্যৱহাৰ কৰি দুটা সংখ্যাৰ হৰণক লিখা হয়। মাথোঁ ভগ্নাংশসমূহত হৰ আৰু লৱসমূহ অখণ্ড সংখ্যা। হৰণক তলত দিয়া ধৰণেও হৰণ চিহ্ন ব্যৱহাৰ কৰি লিখা হয়:
সাধাৰণ গণিতৰ বাহিৰে বেলেগত ইয়াৰ ব্যৱহাৰ কম। en:ISO 80000-2-9.6 অনুসৰি ইয়াক ব্যৱহাৰ কৰা অনুচিত।
সাধাৰণ গণিতত a ক b ৰে হৰণ কৰা বুজাবলৈ এনেদৰেও লিখা হয়:
- বা
১৫৪৪ চনত প্ৰকাশিত Arithmetica integra ত Michael Stifel য়ে এই চিহ্নটো প্ৰথমবাৰৰ বাবে ব্যৱহাৰ কৰিছিল।[2]
Division algorithm
সম্পাদনা কৰকa আৰু d দুটা অখণ্ড সংখ্যা হ’লে, য’ত d ≠ 0, দুটা একক অখণ্ড সংখ্যা q আৰু r পোৱা যায়, যাতে a = qd + r আৰু 0 ≤ r < | d |, ইয়াত | d | হ’ল d ৰ পৰম মান।
অখণ্ড সংখ্যাৰ হৰণ
সম্পাদনা কৰকঅখণ্ড সংখ্যাৰ সংহতিটো হৰণৰ সাপেক্ষে আবদ্ধ নহয়; এটা ভাগফল অখণ্ড সংখ্যা হ’ব যদিহে ভাজ্যটো ভাজকৰ গুণিতক হয়। উদাহৰণস্বৰূপে, 26 ক 11 য়ে হৰণ কৰিলে অথণ্ড সংখ্যা পোৱা নাযায়। এই হৰণ-কাৰ্যক আমি তলত দিয়া পাঁছ ধৰণে বিবেচনা কৰিব পাৰি:
- 26 ক 11 য়ে হৰণ কৰিব নোৱাৰি।
- এটা দশমিক ভগ্নাংশ বা মিশ্ৰ সংখ্যা ৰূপে হৰণফলটোৰ এটা স্থূলমানৰ সৈতে প্ৰকাশ কৰিব পাৰি। যেনে— বা ।
- এটা সৰল ভগ্নাংশ ৰূপে ৰাখি ইয়াক এটা পৰিমেয় সংখ্যা বুলি প্ৰকাশ কৰিব পাৰি।
- অখণ্ড ভাগফল আৰু ভাগশেষৰ সহায়ত ইয়াক প্ৰকাশ কৰিব পাৰি— আৰু বাকী 4।
- কেৱল অখণ্ড ভাগফলৰ সহায়ত প্ৰকাশ কৰিব পাৰি— । এই নিয়ম C আদি কোনো কোনো কম্পিউটাৰ প্ৰগ্ৰেমিঙত ব্যৱহৃত হয়।
পৰিমেয় সংখ্যাৰ হৰণ
সম্পাদনা কৰকদুটা পৰিমেয় সংখ্যাৰ হৰণফল এটা পৰিমেয় সংখ্যা। ইয়াতো ভাজকটো অশূন্য হ’ব লাগে। দুটা পৰিমেয় সংখ্যা p/q আৰু r/s ৰ হৰণফল:
- ।
ইয়াত কেৱল p শূন্য হ’ব পাৰে, বাকীকেইটা অশূন্য অখণ্ড সংখ্যা। এই সংজ্ঞাটোৱে হৰণক পূৰণৰ বিপৰীত বুলি বুজাত সহায় কৰে।
বাস্তৱ সংখ্যাৰ হৰণ
সম্পাদনা কৰকদুয়া বাস্তৱ সংখ্যাৰ হৰণফল এটা বাস্তৱ সংখ্যা। ইয়াতো ভাজকটো অশূন্য। a/b = c যদি আৰু মাত্ৰ যদিহে a = cb আৰু b ≠ 0 হয়।
শূন্যৰে হৰণ
সম্পাদনা কৰককোনো সংখ্যাক শূন্যৰে হৰণ অসংজ্ঞাকৃত; কাৰণ কোনো সংখ্যাক শূন্যৰে হৰণ কৰিলে শূন্য পোৱা যায়।
জটিল সংখ্যাৰ হৰণ
সম্পাদনা কৰকদুটা জটিল সংখ্যাৰ হৰণফল এটা জটিল সংখ্যা। ইয়াতো ভাজকটো অশূন্য হ’ব লাগে। দুটা জটিল সংখ্যাৰ হৰণ তলত দিয়া ধৰণে কৰা হয়:
ইয়াত p, q, r আৰু s বাস্তৱ সংথ্যা আৰু r আৰু s একে সময়তে শূন্য নহয়।
জটিল সংখ্যাক ধ্ৰুৱীয় (polar) ৰূপত প্ৰকাশ কৰিলে ওপৰৰ হৰণটো তলত দিয়া ধৰণে সহজ হৈ পৰে:
ইয়াত p, q, r আৰু s বাস্তৱ সংথ্যা আৰু r অশূন্য।
বহুপদ ৰাশিৰ হৰণ
সম্পাদনা কৰকবহুপদ ৰাশিৰ হৰণৰ সংজ্ঞা বিভিন্ন ক্ষেত্ৰত নিজেও দিব পাৰি, কিন্তু প্ৰাথমিকভাৱে বহুপদ ৰাশিৰ হৰণ ভাগফল আৰু ভাগশেষ ৰাখি অখণ্ড সংখ্যা হৰণ কৰা দৰে কৰা হয়।
মৌলকক্ষৰ হৰণ
সম্পাদনা কৰকমৌলকক্ষৰ (matrices) হৰণৰ সংজ্ঞাও বিভিন্ন ক্ষেত্ৰত নিজে দিব পাৰি, কিন্তু প্ৰাথমিকভাৱে মৌলকক্ষৰ হৰণ এনেদৰে বুজোৱা হয়: A / B = AB−1, য’ত B−1 B ৰ বিপ্ৰতীপ মৌলকক্ষ। মৌলকক্ষৰ হৰণক লিখোঁতে এনেদৰে লিখা হয়: AB−1। মৌলকক্ষক পূৰণে বিনিময় বিধি মানি নচলে।
আধুনিক বীজগণিত হৰণ
সম্পাদনা কৰকআধুনিক বীজগণিত a আৰু b ৰ হৰণ ৰ সংজ্ঞা এনেদৰে দিয়া হয়: বা য’ত হ’ল পূৰণৰ সাপেক্ষে এটা invertible মৌল (অৰ্থাৎ, এটা মৌল পোৱা যায় যাতে য’ত হ’ল multiplicative identity)।
হৰণ আৰু কলন গণিত
সম্পাদনা কৰকদুটা ৰাশিৰ হৰণফলৰ অৱকলজ নিৰ্ণয় কৰাৰ নিয়টো হ’ল:
- ।
আনহাতে ইয়াৰ অনুকল উলিওৱা সাধাৰণ নিয়ম নাই।
তথ্যসূত্ৰ
সম্পাদনা কৰক- ↑ Fosnot and Dolk 2001. Young Mathematicians at Work: Constructing Multiplication and Division. Portsmouth, NH: Heinemann.
- ↑ Earliest Uses of Symbols of Operation, Jeff MIller
বহিঃসংযোগ
সম্পাদনা কৰকৱিকিমিডিয়া কমন্সত Division (mathematics) সম্পৰ্কীয় মিডিয়া ফাইল আছে। |
- Division on a Japanese abacus Archived 2009-04-16 at the Wayback Machine selected from Abacus: Mystery of the Bead
- Chinese Short Division Techniques on a Suan Pan Archived 2015-05-03 at the Wayback Machine
- Rules of divisibility