ভগ্নাংশ (গণিত)
এটা ভগ্নাংশই (Latin: fractus, "broken") এটা অখণ্ড সংখ্যা বা সাধাৰণভাবে, যিকোনো এটা সংখ্যাক সমানে কৰা ভাগসমূহক বুজায়। দৈনন্দিন ব্যৱহাৰিক ক্ষেত্ৰত কোনো এটা বস্তুৰ কিমান অংশক লোৱা হৈছে তাক বুজাবলৈ ভগ্নাংশ ব্যৱহাৰ কৰা হয়; যেনে— আধা, দুই তৃতীয়াংশ, তিনি পঞ্চমাংশ, এক চতুৰ্থাংশ ইত্যাদি।
এটা সৰল ভগ্নাংশ, যেনে , আৰু এটা অখণ্ড সংখ্যা লৱ আৰু এটা অশূন্য অখণ্ড সংখ্যা হৰ হিচাপে লৈ গঠিত হয়— লৱটোৱে সমান সংখ্যক ভাগ কিমান লোৱা হ’ল তাক বুজাই আৰু হৰটোৱে কিমান ভাগ কৰা হ’ল তাক বুজায়। উদাহৰণস্বৰূপে, 3/4ত হৰ 4 আৰু লৱ 3; ইয়াত 4য়ে সমানে চাৰি ভাগ কৰা বুজাইছে আৰু 3য়ে সেই সমান ভাগসমূহৰ পৰা তিনি ভাগ লোৱা বুজাইছে।
ভগ্নাংশসমূহৰ হৰ আৰু লৱৰে বুজোৱাৰ উপৰি দশমিকৰ সহায়ত, শতাংশ চিন ব্যৱহাৰ কৰি বা ঋণাত্মক সূচক ব্যাৱহাৰ কৰিও বুজোৱা হয়। (যেনে— একাদিক্ৰমে 0.01, 1%, আৰু 10−2। এই তিনিওটা উপস্থাপনেই 1/100 ভগ্নাংশটো বুজাইছে। ) এটা অখণ্ড সংখ্যা, যেনে 7কো 1ক হৰ হিচাপে লৈ ভগ্নাংশৰূপত পাব পাৰি: 7 = 7/1।
ভগ্নাংশৰ আন ব্যৱহাৰসমূহ হ’ল— অনুপাত আৰু হৰণৰ প্ৰকাশৰ বাবে।[1] এইদৰেই 3/4 ভগ্নাংশটো অনুপাত 3:4 আৰু হৰণফল 3 ÷ 4 ক বুজাবলৈ ব্যৱহাৰ কৰা হয়।
গণিতত a/b আকাৰে (য’ত a আৰু b হ’ল অখণ্ড সংখ্যা আৰু b অশূন্য) প্ৰকাশ কৰিব পৰা সংখ্যাবোৰৰ সংহতিটোক পৰিমেয় সংখ্যাৰ সংহতি বোলে আৰু ইয়াক Q ৰে বুজোৱা হয়, যিটো ইংৰাজী ভাষাৰ quotient ৰ পৰা আহিছে। এটা সংখ্যা পৰিমেয় হয় নে নহয় তাক পৰীক্ষা কৰিবলৈ এটা ভগ্নাংশ ৰূপত লিখিবলৈ বিচৰা হয়। অৱশ্যে পৰিমেয় সংখ্যাৰ বাহিৰেও আন কিছুমান গাণিতিক ৰাশিক প্ৰকাশ কৰিবৰ বাবে ভগ্নাংশৰ ধাৰণা ব্যৱহাৰ কৰা হয়; যেনে, বীজগণিতীয় ভগ্নাংশ (দুটা বীজগণিতীয় ৰাশিৰ অনুপাত), অপৰিমেয় সংখ্যাযুক্ত ৰাশি, যেনে √2/2 আৰু π/4।
ভগ্নাংশৰ গঠন
সম্পাদনা কৰকসৰল ভগ্নাংশ
সম্পাদনা কৰকএটা সৰল ভগ্নাংশ (ইৰাজীত common fraction, vulgar fraction বা simple fraction) হ’ল এটা পৰিমেয় সংখ্যা, যাক a/b বা ৰূপত লিখা হয়, য’ত a আৰু b অখণ্ড সংখ্যা দুটাক ক্ৰমে লৱ আৰু হৰ বোলা হয়।[2] লৱই সমান সমান অংশসমূহৰ সংখ্যাক আৰু হৰই (যিটো অশূন্য) সেই ধৰণৰ মুঠ কিমানটা অংশ কৰা হৈছিল তাক বুজাই। 2/5 আৰু 7/3 —এই ভগ্নাংশকেইটাত হাউলি থকা ৰেখাখণ্ডক solidus বা forward slash বুলি কোৱা হয়। আৰু —এই ভগ্নাংশকেইটাত থকা অনুভূমিক ৰেখাখণ্ডক vinculum বা সাধাৰণভাবে "fraction bar" বুলি কোৱা হয়।
সৰল ভগ্নাংশসমূহ লিখাৰ পদ্ধতি
সম্পাদনা কৰক‘Computer display’ আৰু ‘typography’ত সৰল ভগ্নাংশসমূহক কেতিয়াবা এটা ‘character’ ৰূপত ব্যৱহাৰ কৰা হয়, যেনে— ½। সৰল ভগ্নাংশ এটাক প্ৰকাশ কৰিবলৈ তলৰ চাৰিটা বৈজ্ঞানিক পদ্ধতি ব্যৱহাৰ কৰা হয়:[3]
- special fractions: কিছুসংখ্যাক ভগ্নাংশক একোটা বিশেষ ‘character’ ৰুপে ব্যৱহাৰ কৰা হয়, ইহঁতৰ উচ্চতা বা জোখ আন ‘character’সমূহৰ সৈতে সমান; যেনে: ½, ⅓, ⅔, ¼ আৰু ¾।
- case fractions: এইসমূহ special fractions ৰ সৈতে একে, মাথোঁ ইহঁতক horizontal bar ৰ সহায়ত প্ৰকাশ কৰি হয়, যেনে: । ইয়াত হৰ আৰু লৱৰ জোখ আন ‘character’সমূহৰ সৈতে সমান হয়।
- shilling fractions: যেনে: ½
- built-up fractions: যেনে:
অনুপাত
সম্পাদনা কৰকঅনুপাত হ’ল ভগ্নাংশৰূপত প্ৰকাশ কৰিব পৰা দুটা বা অধিক সংখ্যা বা একেধৰণৰ বস্তুৰ এক সম্বন্ধ। উদাহৰণস্বৰূপে, এটা বাছ-আস্থানত 12খন বাছ ৰৈ আছে; তাৰে
- 2খন বগা,
- 6খন ৰঙা,
- 4খন হালধীয়া
তেন্তে বগা বাছ আৰু হালধীয়া বাছৰ অনুপাত 2:4 বা 1:2। যেতিয়া সম্পূৰ্ণ আংশটোৰ পৰিপেক্ষিতত অনুপাত নিৰ্ণয় কৰা হয়, তেতিয়া অনুপাত ভগ্নাংশলৈ ৰূপান্তৰ কৰিব পাৰি। উদাহৰণস্বৰূপে, ওপৰৰ উদাহৰণটোৰ ক্ষেত্ৰত— মুঠ বাছৰ সৈতে হালধীয়া বাছৰ সংখ্যাৰ অনুপাত হ’ব 4:12 বা 1:3। ইয়াক ভগ্নাংশলৈ ৰূপান্তৰ কৰিব পাৰি আৰু সমূহ বাছৰ 4/12 অংশ বা 1/3 অংশ হালধীয়া বাছ বুলি ক’ব পাৰি।
প্ৰকৃত আৰু অপ্ৰকৃত ভগ্নাংশ
সম্পাদনা কৰকসৰল ভগ্নাংশসমূহক প্ৰকৃত আৰু অপ্ৰকৃত ভগ্নাংশ এই দুই ভাগত ভগোৱা হয়। যেতিয়া হৰ আৰু লৱ ধণাত্মক সংখ্যা হয়, তেতিয়া হৰতকৈ লৱ সৰু হ’লে ভগ্নাংশটোক প্ৰকৃত ভগ্নাংশ বোলে আৰু হৰতকৈ লৱ ডাঙৰ হ’লে অপ্ৰকৃত ভগ্নাংশ বোলে।[4][5] সাধাৰণতে, সৰল ভগ্নাংশ এটাক প্ৰকৃত ভগ্নাংশ বোলা হয় যদিহে ইয়াৰ পৰম মান একতকৈ সৰু হয়, অৰ্থাৎ ই -1 আৰু 1 ৰ মাজত থাকে (কিন্তু -1 বা 1 ৰ সমান নহয়)।[6][7] ইয়াক অপ্ৰকৃত ভগ্নাংশ বোলা হয় যদিহে ইয়াৰ পৰম মান 1 ৰ সমান বা 1 তকৈ ডঙৰ হয়। উদাহৰণস্বৰূপে, 2/3, -3/4 আৰু 4/9 প্ৰকৃত ভগ্নাংশ; 9/4, -4/3 আৰু 8/3 অপ্ৰকৃত ভগ্নাংশ।
মিশ্ৰ সংখ্যা বা মিশ্ৰ ভগ্নাংশ
সম্পাদনা কৰকমিশ্ৰ সংখ্যা বা মিশ্ৰ ভগ্নাংশ হ’ল এটা অশূন্য অখণ্ড সংখ্যা আৰু এটা প্ৰকৃত ভগ্নাংশৰ যোগফল। "+" চিনটো সংযোগ নকৰাকৈয়ে ইহঁতক প্ৰকাশ কৰিব পাৰি। উদাহৰণস্বৰূপে, দুটা সমান জোখৰ সম্পূৰ্ণ কেক আৰু আন এটা একে জোখৰ কেকৰ তিনি চতুৰ্থাংশক একেলগে তলত দিয়া ধৰণে বুজাব পাৰি; ইয়াত অখণ্ড অংশ আৰু ভগ্নাংশ দুয়োটাক পৰস্পৰৰ কাষত তলত দিয়া ধৰণে লিখিব পাৰি: ।
ইয়াক বীজগণিতত সচৰাচৰ ব্যৱহাৰ কৰা পূৰণ হিচাপে ধৰা নহয়। বীজগণিতত এটা মিশ্ৰ ভগ্নাংশ নহয়, বীজগণিতত ইয়াৰ জৰিয়তে তলত দিয়া ধৰণে পূৰণকহে বুজা যায়:
।
এটা অপ্ৰকৃত ভগ্নাংশক এটা অখণ্ড সংখ্যা আৰু এটা প্ৰকৃত ভগ্নাংশৰ যোগফল হিচাপে প্ৰকাশ কৰিব পাৰি। এটা মিশ্ৰ সংখ্যাক তলত দিয়া ধৰণে অপ্ৰকৃত ভগ্নাংশলৈ ৰূপান্তৰ কৰিব পাৰি:
- এই মিশ্ৰ সংখ্যাটো যেগফল হিচাপে লিখা হ’ল ।
- অখণ্ড সংখ্যাটো এটা অপ্ৰকৃত ভগ্নাংশলৈ ৰূপান্তৰিত কৰা হ’ল, য’ত হৰটো আনটো ভগ্নাংশত থকা হৰটোৰ সমান: ।
- দুয়োটা ভগ্নাংশ যোগ কৰা হ’ল আৰু লাভ কৰা অপ্ৰকৃত ভগ্নাংশটো হ’ল প্ৰদত্ত মিশ্ৰ সংখ্যাটোৰ সমান। এই উদাহৰণটোৰ ক্ষেত্ৰত: ।
একেদৰে, এটা অপ্ৰকৃত ভগ্নাংশ মিশ্ৰ সংখ্যালৈ তলত দিয়া ধৰণে ৰূপান্তৰ কৰিব পাৰি:
- প্ৰথমে লৱক হৰৰে হৰণ কৰিব লাগে। যেনে, , 11 ক 4 ৰে হৰণ কৰিলে পোৱা যাব— 11 ÷ 4 = 2 আৰু ভাগশেষ (বা বাকী) 3।
- ভাগফলটো হ’ব মিশ্ৰ সংখ্যাটোত থাকিবলগীয়া অখণ্ড অংশটো আৰু ভাগশেষটো হ’ব মিশ্ৰ সংখ্যাটোত থাকিবলগীয়া ভগ্নাংশটোৰ লবটো। এই উদাহৰণটোত, 2 হ’ল অখণ্ড অংশ আৰু 3 হ’ল ভগ্নাংশটোৰ লব।
- নতুন হৰটো অপ্ৰকৃত ভগ্নাংশটোত থকা হৰটোৱেই হ’ব। এই উদাহৰণটোত, হৰটো হ’ব 4। গতিকে ।
মিশ্ৰ সংখ্যাও ঋণাত্মক হ’ব পাৰে, যেনে— , যিটো মান ।
প্ৰতিলোম আৰু "invisible denominator"
সম্পাদনা কৰকভগ্নাংশ এটা হৰ আৰু লৱক সাল-সলনি কৰি পোৱা নতুন ভগ্নাংশটোক পূৰ্বৰ ভগ্নাংশটোৰ প্ৰতিলোম বোলে। ৰ প্ৰতিলোম হ’ল । এটা ভগ্নাংশ আৰু তাৰ প্ৰতিলোমৰ পূৰণফল 1। একক হৰ হিচাপে ধৰি যিকোনো অখণ্ড সংখ্যাকে ভগ্নাংশৰূপত প্ৰকাশ কৰিব পাৰি। যেনে, 17 ক এনেদৰে লিখিব পাৰি— , য’ত 1 ক কেতিয়াবা invisible denominator বুলি ধৰা হয়। গতিকে, শূন্যৰ বাহিৰে প্ৰতিটো অখণ্ড সংখ্যা আৰু প্ৰতিটো ভগ্নাংশৰে এটা প্ৰতিলোম থাকে। 17 ৰ প্ৰতিলোম হ’ল ।
জটিল ভগ্নাংশ
সম্পাদনা কৰকজটিল ভগ্নাংশত হৰ, লৱ বা দুয়োটাতে একোটা ভগ্নাংশ বা মিশ্ৰ সংখ্যা থাকে।[8][9] উদাহৰণস্বৰূপে, আৰু । এটা জটিল ভগ্নাংশক সৰল ভগ্নাংশলৈ ৰূপান্তৰিত কৰিবলৈ হৰণৰ প্ৰক্ৰিয়াসমূহ ব্যৱহাৰ কৰা হয়। যেনে:
যদি কোনো জটিল ভগ্নাংশত এই প্ৰক্ৰিয়া সমূহৰ কোনো পথ নাথাকে তেনে জটিল ভগ্নাংশসমূহ প্ৰকৃততে অৰ্থহীন ৰাশিহে বুলি পৰিগণিত হয়।
যৌগিক ভগ্নাংশ
সম্পাদনা কৰকএটা যৌগিক ভগ্নাংশ হ’ল এটা বা ততোধিক ভগ্নাংশৰ ভগ্নাংশ, য’ত পূৰণৰ ঠাইত ৰ শব্দটো যুক্ত কৰা হয়।[8][9] এটা যৌগিক ভগ্নাংশ সৰল ভগ্নাংশলৈ ৰূপান্তৰ কৰিবলৈ পূৰণ কৰা হয়। উদাহৰণস্বৰূপে, ৰ হ’ল এট যৌগিক ভগ্নাংশ, ইয়াক সৰল ভগ্নাংশলৈ এনেদৰে ৰূপান্তৰ কৰিব পাৰি: । যৌগিক ভগ্নাংশ আৰু জটিল ভগ্নাংশ পৰস্পৰ সম্পৰ্কযুক্ত, কোনো সময়ত ইহঁত সমাৰ্থক শব্দৰূপেও ব্যৱহৃত হয়।
দশমিক ভগ্নাংশ আৰু শতাংশ
সম্পাদনা কৰকদশমিক ভগ্নাংশ হ’ল এনে ধৰণৰ ভগ্নাংশ য’ত হৰটোক প্ৰকাশ্যে দিয়া নাথাকে, কিন্তু ইয়াৰ হৰটো দহৰ কোনো আখণ্ড সূচকৰূপে থকা বুলি বুজা যায়। দশমিক ভগ্নাংশসমূহক সাধাৰণতে দশমিক সংখ্যাৰূপত প্ৰকাশ কৰা হয়, য’ত দশিমিকৰ সোঁফালে থকা অংকৰ সংখ্যাৰ পৰা হৰটো নিৰ্ণয় কৰিব পাৰি। যেনে— 0.75 ত লৱ হ’ল 75 আৰু হৰ হ’ব 10 ৰ দুই ঘাট, অৰ্থাৎ 100, কাৰণ দশমিকৰ ইয়াত সোঁফালে দুটা অংক আছে। একতকৈ ডাঙৰ দশমিক সংখ্যাসমূহৰ ক্ষেত্ৰত (যেনে 3.75), দশমিক বাওঁফালে থকা অংকসমূহে অখণ্ড অংশ আৰু সোঁফালে থকা অংকসমূহে (এই ক্ষেত্ৰত 0.75) ভংগ্নাংশটো প্ৰকাশ কৰিব পাৰে। 3.75 ক অপ্ৰকৃত ভগ্নাংশ বা মিশ্ৰ সংখ্যাৰূপে (ক্ৰমে 375/100, ) হিচাপে প্ৰকাশ কৰিব পাৰি।
দশমিক ভগ্নাংশসমূহক ঋণাত্মক সূচকৰ সৈতে বৈজ্ঞানিক পদ্ধতি ব্যৱহাৰ কৰিও প্ৰকাশ কৰিব পাৰি। যেনে— 6.023×10−7, ই 0.0000006023 ক বুজায়। 10−7য়ে হৰ 107 ক বুজায়। 107 য়ে হৰণ কৰিলে দশমিক বিন্দুটো বাওঁফালৰ পৰা 7 ঘৰ পাৰ হৈ যায়।
দশমিক বিন্দুৰ সোঁফালে অসীম সংখ্যক অংক থকা দশমিক ভগ্নাংশই একোটা অসীম শ্ৰেণীক বুজায়। যেনে— 1/3 = 0.333... যিটোৱে এই অসীম শ্ৰেণীটোক বুজাইছে— 3/10 + 3/100 + 3/1000 + ... .
আন এক ধৰণৰ ভগ্নাংশ হ’ল শতাংশ (percentage, Latin per centum অৰ্থ "per hundred", ইয়াক % চিহ্নটোৰ সহায়ত প্ৰকাশ কৰা হয়)। ইয়াত হৰটো সদায় 100। গতিকে, 75% ৰ অৰ্থ হ’ল 75/100। একেধৰণৰ আন এক ধাৰণা হ’ল en:permille, য’ত হৰ 1000 আৰু সাধাৰণভাৱে, en:parts-per notation, যেনে— 75 parts per million ৰ অৰ্থ হ’ল 75/1,000,000।
Special cases
সম্পাদনা কৰক- একক ভগ্নাংশ: যিবোৰ সৰল ভগ্নাংশত লৱটো ১ সেইবোৰ ভগ্নাংশক একক ভগ্নাংশ (unit fraction) বোলা হয়। যেনে: । একক ভগ্নাংশসমূহক ঋণাত্মক সূচক ব্যৱহাৰ কৰিও প্ৰকাশ কৰিব পাৰি, যেনে— 2−1 যি 1/2 বুজায়; আৰু 2−2 যি 1/(22) বা 1/4 বুজায়।
- ইজিপ্তীয় ভগ্নাংশ: এক বা তাতোধিক একক ভগ্নাংশৰ যোগফলৰূপে প্ৰকাশ কৰা ভগ্নাংশক ইজিপ্তীয় ভগ্নাংশ বোলা হয়। যেনে— । পুৰণি ইজিপ্তীয়সকলে , আৰু বাহিৰে সকলো ভগ্নাংশকে এই ধৰণে প্ৰকাশ কৰিছিল, সেইবাবেই এনেদৰে লিখা ভগ্নাংশসমূহক ইজিপ্তীয় ভগ্নাংশ বোলে। সকলো ধণাত্মক পৰিমেয় সংখ্যাকে ইজিপ্তীয় ভগ্নাংশৰূপত লিখিব পাৰি। যেনে, ক হিচাপে লিখিব পাৰি। যিকোনো ধণাত্মক পৰিমেয় সংখ্যাকে অসীম সংখ্যক ধৰণে একক ভগ্নাংশৰ যোগফলৰূপে প্ৰকাশ কৰিব পাৰি। যেনে— ক আৰু ৰূপত প্ৰকাশ কৰিব পাৰি।
- Dyadic fraction: যিবোৰ সৰল ভগ্নাংশৰ হৰ ২ ৰ ঘাট ৰূপে থাকে সেইবোৰক Dyadic fraction বোলে। যেনে— ।
ভগ্নাংশৰ যোগ-বিয়োগ
সম্পাদনা কৰকঅখণ্ড সংখ্যাৰ দৰে ভগ্নাংশইয়ো ক্ৰম-বিনিময় বিধি, সহযোগ বিধি আৰু বিতৰণ বিধি মানি চলে আৰু শূন্যৰে হৰণ প্ৰক্ৰিয়া ই মানি নচলে।
ভগ্নাংশৰ সমতা
সম্পাদনা কৰককোনো এটা সৰল ভগ্নাংশৰ হৰ আৰু লৱক একেটা অশূন্য সংখ্যাৰে পূৰণ কৰিলে প্ৰথম ভগ্নাংশটোৰ সৈতে সমান ভগ্নাংশ এটাই পোৱা যায়। ইয়াৰ কাৰণ হ’ল— যিকোনো অশূন্য সংখ্যা ৰ বাবে । গতিকে, ৰে পূৰণ কৰাৰ অৰ্থ হ’ল ১ ৰে পূৰণ কৰা আৰু যিকোনো সংখ্যাক ১ৰে পূৰণ কৰিলে পূৰ্বৰ সংখ্যাটোকে পোৱা যায়। উদাহৰণস্বৰূপে চাবলৈ এই ভগ্নাংশটোক লোৱা হওক— । ইয়াৰ হৰ আৰু লৱক 2 ৰে পূৰণ কৰিলে পোৱা যাব আৰু ইয়াৰ মান 0.5, যিটো ৰ মানৰ সৈতে একে। ইয়াক বুজিবলৈ এটা কেক কল্পনা কৰিব পাৰোঁ, যিটোক সমানে চাৰি কৰা হ’ল আৰু তাৰে দুভাগ লোৱা হ’ল ( ), ফলত আমি প্ৰকৃততে কেকটোৰ আধা ভাগ লাভ কৰিলোঁ ( )।
কোনো এটা সৰল ভগ্নাংশৰ হৰ আৰু লৱক একেটা অশূন্য সংখ্যাৰে হৰণ কৰিলেও পূৰ্বৰ ভগ্নাংশটোকে পোৱা যায়। এই পদ্ধতিক ভগ্নাংশৰ সৰল কৰা বোলা হয়। এটা সৰল ভগ্নাংশৰ হৰ আৰু লৱ সহ-মৌলিক (অৰ্থাৎ, দুয়োটাৰে উমৈহতীয়া উৎপাদক কেৱল ১) হ’লে তাক Irreducible বোলা হয়। যেনে— Irreducible নহয়, কিয়নো 3 আৰু 9 দুয়োটাকে 3 ৰে হৰণ যায়, কিন্তু Irreducible, কিয়নো 3 আৰু 8 ৰ সাধাৰণ উৎপাদক কেৱল 1।
এই নিয়ম অনুসৰি আমি দেখুৱাব পাৰোঁ যে = = = ।
এটা সৰল ভগ্নাংশৰ হৰ আৰু লৱৰ গৰিষ্ঠ সাধাৰণ উৎপাদকেৰে সিহঁতক হৰণ কৰি ভগ্নাংশটোক Irreducible ৰূপলৈ নিব পাৰি। যেনে— 63 আৰু 462 ৰ গ.সা.উ. 21, গতিকে ৰ হৰ আৰু লৱক 21 ৰে হৰণ কৰি তলত দিয়া ধৰণে Irreducible ৰূপলৈ নিব পাৰি:
ভগ্নাংশৰ তুলনা
সম্পাদনা কৰকএকে হৰ যুক্ত সৰল ভগ্নাংশক তুলনা কৰিবলৈ লৱ দুটাক তুলনা কৰিলেই হয়।
- কাৰণ 3>2।
যদি দুটা ধণাত্মক সৰল ভগ্নাংশৰ একে লৱ থাকে, তেন্তে সৰু হৰ থকা ভগ্নাশটো ডাঙৰ হয়। যেতিয়া এটা বস্তু সমানে ভাগ কৰা হয়, যদি কম সংখ্যক অংশ সম্পূৰ্ণ বস্তুটো পাবলৈ প্ৰয়োজন হয়, তেন্তে প্ৰতিটো টুকুৰাই ডাঙৰ হ’ব লাগিব। যেতিয়া দুটা ধণাত্মক ভগ্নাংশত একে লৱ থাকে, সিহঁতে একে সংখ্যক অংশ বুজাব, কিন্তু যিটো ভগ্নাংশত সৰু হৰ থাকে তাৰ অংশসমূহ ডাঙৰ হ’ব।
পৃথক পৃথক হৰ আৰু লৱ থকা সৰল ভগ্নাংশৰ ক্ষেত্ৰত তুলনা কৰিবলৈ হ’লে হৰসমূহ একে কৰি ল’ব লাগে। আৰু ক তুলনা কৰিবলৈ সিহঁতক ক্ৰমে আৰু লৈ ৰূপান্তৰ কৰি লোৱা হ’ল। এতিয়া bd দুয়োটা ভগ্নাংশৰে সাধাৰণ হৰ আৰু লৱ দুটা হ’ল ক্ৰমে ad আৰু bc, যি দুটাক তুলনা কৰিব পৰা যাব।
- ? পৰা পোৱা যাব
দুটা ভগ্নাংশক তুলনা কৰিবলৈ সাধাৰণ হৰটো নিৰ্ণয় কৰাটো প্ৰয়োজনীয় নহয়। সহজতেই "cross multiplying" ৰ সহায়েৰে হৰ দুটা একে কৰি লৈ ad আৰু bc ক তুলনা কৰিব পাৰি।
- ?
সাধাৰণ হৰ পাবলৈ প্ৰতিটো ভগ্নাংশৰ তলে-ওপৰে আনটো ভগ্নাংশৰ হৰৰে পূৰণ কৰা হ’ল:
- ?
এতিয়া হৰ দুটা সমান, কিন্তু ইহঁতৰ মান গণনা কৰাৰ কোনো প্ৰয়োজন নহয়— মাথোঁ লৱ দুটা তুলনা কৰিলেই হ’ল। যিহেতু 5×17 (= 85) 4×18 (= 72) তকৈ ডাঙৰ, গতিকে ।
আকৌ, সকলো ঋণাত্মক ভগ্নাংশকে ধৰি সকলো ঋণাত্মক সংখ্যা শূন্যতকৈ সৰু আৰু সকলো ধণাত্মক ভগ্নাংশকে ধৰি সকলো ধণাত্মক সংখ্যা শূন্যতকৈ ডাঙৰ, গতিকে সকলো ঋণাত্মক ভগ্নাংশ সকলো ধণাত্মক ভগ্নাংশতকৈ সৰু।
ভগ্নাংশৰ যোগ
সম্পাদনা কৰকহৰ একে হ’লে দুটা সৰল ভগ্নাংশ তলত দিয়া ধৰণে যোগ কৰা হয়:
- ।
কিন্তু হৰ একে নহ’লে হৰসমূহ সমান কৰি ল’ব লাগে। যেনে: ।
পদ্ধিটো বীজগণিতীয়ভাবে এনেদৰে দেখুৱাব পাৰি:
আৰু:
এই পদ্ধতি খটুৱাই নিশ্চয়কৈ মান নিৰ্ণয় কৰিব পাৰি, কিন্তু কেতিয়াবা তাতকৈ সৰু হৰও ব্যৱহাৰ কৰিব পাৰি। যেনে: আৰু ৰ যোগৰ ক্ষেত্ৰত 48 ক হৰ হিচাপে ল’ব পাৰি (4 আৰু 12 ৰ পূৰণফল), কিন্তু তাতকৈ সৰু 12 কো হৰ হিচাপে ল’ব পৰা যায়, য’ত 12 হ’ল 4 আৰু 12 ৰ ল.সা.গু.।
বিয়োগ
সম্পাদনা কৰকভগ্নাংশৰ বিয়োগফল নিৰ্ণয় কৰাটোও যোগফল নিৰ্ণয় কৰা নিয়মৰ সৈতে একে:- ইয়াৰ বাবেও এটা সাধাৰণ হৰ নিৰ্ণয় কৰি ল’ব লাগে। উদাহৰণস্বৰূপে:
পূৰণ
সম্পাদনা কৰকএটা ভগ্নাংশক আন এটা ভগ্নাংশৰে পূৰণ
সম্পাদনা কৰকদুটা ভগ্নাংশ পূৰণ কৰিবলৈ হ’লে সিহঁতৰে হৰসমূহ আৰু লৱসমূহ পূৰণ কৰা হয়। গতিকে:
হৰ আৰু লৱৰ সাধাৰণ উৎপাদকসমূহ আঁতৰাই ভগ্নাংশটো irreducible ৰূপলৈ নিব পাৰি। যেনে:
ভগ্নাংশক অখণ্ড সংখ্যাৰে পূৰণ
সম্পাদনা কৰকএই ক্ষেত্ৰত, অখণ্ড সংখ্যাটোত 1 হৰ হিচাপে লৈ সৰল ভগ্নাংশলৈ পৰিবৰ্তন কৰা হয় আৰু ওপৰৰ পদ্ধতিটোৰ দৰে পূৰণ কৰা হয়। যেনে:
মিশ্ৰ সংখ্যাৰ পূৰণ
সম্পাদনা কৰকমিশ্ৰ সংখ্যাৰ পূৰণৰ ক্ষেত্ৰত মিশ্ৰ সংখ্যাসমূহ অপ্ৰকৃত ভগ্নাংশলৈ পৰিবৰ্তন কৰি লোৱা হয়। যেনে:
ভগ্নাংশৰ হৰণ
সম্পাদনা কৰকএটা ভগ্নাংশক এটা অখণ্ড সংখ্যাৰে হৰণ কৰিবলৈ হ’লে ভগ্নাংশটোৰ লৱটোৰ পৰা অখণ্ড সংখ্যাটো হৰণ কৰা হয় বা ভগ্নাংশটোৰ লবটোৰ লগত অখণ্ড সংখ্যাটো পূৰণ কৰা হয়। উদাহৰণস্বৰূপে, মানে বা , যিটো ৰ সমান। আনহাতে এটা সংখ্যাক কোনো এটা ভগ্নাংশৰে হৰণ কৰিবলৈ সংখ্যাটোৰ লগত ভগ্নাংশটোৰ প্ৰতিলোমটো পূৰণ কৰা হয়। যেনে: ।
ভগ্নাংশক দশমিক সংখ্যালৈ আৰু দশমিক সংখ্যাক ভগ্নাংশলৈ পৰিবৰ্তন
সম্পাদনা কৰকএটা সৰল ভগ্নাংশৰ হৰটোৰে লৱটোক হৰণ কৰি দশমিক সংখ্যালৈ পৰিবৰ্তন কৰিব পাৰি। যেনে: 1/4 ক দশমিক সংখ্যালৈ ৰূপান্তৰ কৰিবলৈ 4 ৰে 1.00ক হৰণ কৰিব লাগে আৰু তেতিয়া 0.25 পোৱা যায়। আকৌ 1/3 ৰ ক্ষেত্ৰত 3 ৰে 1.0000...ক হৰণ কৰিব লাগে, আৰু ইয়াত নিৰ্ণেয় হৰণফল পোৱাৰ পাছত হৰণ প্ৰক্ৰিয়া সমাপ্ত কৰা হয়। কাৰণ, 1/4 ৰ ক্ষেত্ৰত দশমিকৰ পাছৰ দুটা স্থানতে সম্পূৰ্ণ শুদ্ধ মান পোৱা যায়, কিন্তু 1/3 ক প্ৰকৃততে দশমিকৰ পাছত সসীম সংখ্যক অংকৰে সৈতে সম্পূৰ্ণ শুদ্ধ মানেৰে সৈতে লিখিব নোৱাৰি।
দশমিক সংখ্যা এটা ভগ্নাংশলৈ পৰিবৰ্তন কৰিবলৈ, হৰ 1 লৈ তাৰ পিঠিত 0 বহুওৱা হয় আৰু এই শূন্যৰ সংখ্যা দশমিক সংখ্যাটোৰ দশমিকৰ সোঁফালে থকা অংকৰ সংখ্যাৰ সমান হয় আৰু ভগ্নাংশটোৰ লৱটোত গোটেই সংখ্যাটোকে দশমিক চিহ্নটো আঁতৰাই লোৱা হয়। যেনে: 12.3456 = 123456/10000।
পৌনঃপুনিক দশমিক সংখ্যাক ভগ্নাংশত প্ৰকাশ
সম্পাদনা কৰকপৌনঃপুনিক দশমিক যুক্ত সংখ্যাত, পুনঃ পুনঃ অহা অংকসমূহৰ ওপৰত এডাল ‘বাৰ’ ব্যৱহাৰ কৰি প্ৰকাশ কৰা হয়। যেনে: 0.789 = 0.789789789…। গণনাৰ পৰিশুদ্ধতাৰ বাবে অসীম সংখ্যক পৌনঃপুনিক দশমিক যুক্ত সংখ্যাক ভগ্নাংশলৈ পৰিবৰ্তন কৰিব লগা হয়। যিবোৰ পৌনঃপুনিক দশমিক যুক্ত সংখ্যাত পুনঃ পুনঃ অহা অংকসমূহ দশমিক পাছতে থাকে, সেইসমূহক ভগ্নাংশলৈ পৰিবৰ্তন কৰিবলৈ তলৰ উদাহৰণসমূহত দিয়া পদ্ধতিটো ব্যৱহাৰ কৰা হয়:
- 0.5 = 5/9
- 0.62 = 62/99
- 0.264 = 264/999
- 0.6291 = 6291/9999
আনহাতে যিবোৰত দশমিক চিহ্নৰ পাছত 0 থাকে আৰু তাৰ পাছত পুনঃ পুনঃ অহা অংকসমূহ থাকে, সেইবোৰ সংখ্যাক তলত দিয়াৰ ধৰণে ভগ্নাংশলৈ ৰূপান্তৰ কৰা হয়:
- 0.05 = 5/90
- 0.000392 = 392/999000
- 0.0012 = 12/9900
আকৌ, যিবোৰত দশমিক চিহ্নৰ পাছত 0 ৰ উপৰি আন অংক থাকে আৰু তাৰ পাছত পুনঃ পুনঃ অহা অংকসমূহ থাকে (যেনে— 0.1523987), সেইবোৰ সংখ্যাক তলত দিয়াৰ ধৰণে ভগ্নাংশলৈ ৰূপান্তৰ কৰা হয়:
- 0.1523987 = 0.1523 + 0.0000987
ইয়াৰ পাছত পৌনঃপুনিক দশমিক যুক্ত সংখ্যাটো ওপৰৰ পদ্ধতিসমূহ খটুৱাই ভগ্নাংশলৈ ৰূপন্তৰ কৰা হয়:
- 0.1523 + 987/9990000 = 1522464/999000।
ইয়াত নীহিত থকা প্ৰকৃত পদ্ধতিটো হ’ল: ধৰাহ’ল x=0.1523987987... 10,000x= 1,523.987987... 10,000,000x=1,523,987.987987... 10,000,000x - 10,000x = 1,523,987.987987... - 1,523.987987... 9,990,000x = 1,523,987 - 1,523 9,990,000x = 1,522,464 x=1522464/999000
বিমূৰ্ত্ত গাণিতিক অধ্যয়নত ভগ্নাংশ
সম্পাদনা কৰকব্যৱহাৰিক ক্ষেত্ৰৰ উপৰি বিশুদ্ধ গণিততো ভগ্নাংশ অধ্যয়ন কৰা হয়। ইয়াত ভগ্নাংশক ক্ৰমিত যোৰ (a, b)ৰ সহায়ত বুজুৱা হয়, য’ত a আৰু b অখণ্ড সংখ্যা আৰু b ≠ 0। ইয়াত যোগ, বিয়োগ, পূৰণ আৰু হৰণৰ সংজ্ঞা তলত দিয়া ধৰণে দিয়া হয়:[10]
- (য’ত c ≠ 0)
তদুপৰি, ~ iff ।
বীজগণিতীয় ভগ্নাংশ
সম্পাদনা কৰকবীজগণিতীয় ভগ্নাংশ হ’ল দুটা বীজগণিতীয় ৰাশিৰ অনুপাত। যেনে: আৰু ।
যদি ৰ দৰে হৰ আৰু লৱ বহুপদ ৰাশি হয়, তেন্তে বীজগণিতীয় ভগ্নাংশটোক পৰিমেয় ভগ্নাংশ বোলে। আৰু য’ত হৰ বা লৱ বা দুয়োটাতে ভগ্নাংশ সূচক থাকে তাক অপৰিমেয় ভগ্নাংশ বোলে; যেনে: ।
কোনো বীজগণিতীয় ভগ্নাংশত হৰ, লৱ বা দুয়োটাতে ভগ্নাংশ যুক্ত হৈ থাকিলে তাক জটিল ভগ্নাংশ বুলি কোৱা হয়, যেনে: ,।
কোনো পৰিমেয় ভগ্নাংশক দুটা বা ততোধিক পৰিমেয় ভগ্নাংশৰ যোগফললৈ পৰিবৰ্তন কৰিলে তাক আংশিক ভগ্নাংশলৈ পৰিবৰ্তন কৰা বোলে। ইয়াৰ উদ্দেশ্য হ’ল— ৰাশিসমূহৰ মাত্ৰা (degree) সৰু কৰা। উদাহৰণস্বৰূপে, ক আংশিক ভগ্নাংশলৈ ৰূপান্তৰ কৰিলে পাওঁ: + । অনুকলন গণিত, অৱকলজ সমীকৰণ আদিত আংশিক ভগ্নাংশ ব্যৱহৃত হয়।
মূলীয় ৰাশি (Radical expressions)
সম্পাদনা কৰককোনো ভগ্নাংশৰ হৰ আৰু/বা লৱত ‘মূল’ (Nth root|radicals) যুক্ত হৈ থাকিব পাৰে। যদি হৰত ‘মূল’ যুক্ত হৈ থাকে তেন্তে তলত দিয়া পদ্ধতিৰে মূলসমূহ হৰৰ পৰা আঁতৰাব পাৰি। ইয়াৰ ফলত লবটো অপৰিমেয়লৈ পৰিবৰ্তন হ’ব পাৰে। আন ভগ্নাংশৰ লগত যোগ-বিয়োগ বা তুলনাৰ বাবে হৰৰ পৰা মূল আঁতৰোৱাৰ প্ৰয়োজন হয়।
ইতিহাস
সম্পাদনা কৰকঅখণ্ড সংখ্যাৰ প্ৰতিলোমসমূহ, যেনে— আধা, এক তৃতীয়াংশ, এক চতুৰ্থাংশ ইত্যাদি হৈছে আটাইতকৈ পুৰণিকালৰ পৰা ব্যৱহৃত ভগ্নাংশ।[11] খ্ৰী.পূ. ১০০০ত ইজিপ্তীয়সকলে ‘ইজিপ্তীয় ভগ্নাংশ’ ব্যৱহাৰ কৰিছিল। গ্ৰীকসকলে ‘একক ভগ্নাংশ’ আৰু পিছলৈ ‘অবিৰত ভগ্নাংশ’ ব্যৱহাৰ কৰিছিল।
References
সম্পাদনা কৰক- ↑ H. Wu, The Mis-Education of Mathematics Teachers, Notices of the American Mathematical Society, Volume 58, Issue 03 (March 2011), page 374
- ↑ Weisstein, Eric W., "Common Fraction" মেথৱৰ্ল্ডৰ পৰা.
- ↑ Galen, Leslie Blackwell (March 2004), "Putting Fractions in Their Place", American Mathematical Monthly খণ্ড 111 (3), archived from the original on 2011-07-13, https://web.archive.org/web/20110713044149/http://www.integretechpub.com/research/papers/monthly238-242.pdf, আহৰণ কৰা হৈছে: 2012-12-28
- ↑ World Wide Words: Vulgar fractions
- ↑ Weisstein, Eric W., "Improper Fraction" মেথৱৰ্ল্ডৰ পৰা.
- ↑ Math Forum - Ask Dr. Math:Can Negative Fractions Also Be Proper or Improper?
- ↑ New England Compact Math Resources
- ↑ 8.0 8.1 Trotter, James (1853). A complete system of arithmetic. পৃষ্ঠা. 65. http://books.google.com/books?id=a0sDAAAAQAAJ&pg=PA65&dq=%2B%22complex+fraction%22+%2B%22compound+fraction%22&hl=sv&ei=kN-6TuKZIITc0QHStb3eCQ&sa=X&oi=book_result&ct=result&resnum=4&ved=0CD4Q6AEwAw#v=onepage&q=%22complex%20fraction%22&f=false.
- ↑ 9.0 9.1 Barlow, Peter (1814). A new mathematical and philosophical dictionary. http://books.google.com/books?id=BBowAAAAYAAJ&pg=PT329&dq=%2B%22complex+fraction%22+%2B%22compound+fraction%22&hl=sv&ei=kN-6TuKZIITc0QHStb3eCQ&sa=X&oi=book_result&ct=result&resnum=10&ved=0CFwQ6AEwCQ#v=onepage&q=%2B%22complex%20fraction%22%20%2B%22compound%20fraction%22&f=false.
- ↑ "Fraction - Encyclopedia of Mathematics". Encyclopediaofmath.org. 2012-04-06. http://www.encyclopediaofmath.org/index.php/Fraction। আহৰণ কৰা হৈছে: 2012-08-15.
- ↑ Eves, Howard; with cultural connections by Jamie H. (1990). An introduction to the history of mathematics (6th ed. সম্পাদনা). প্ৰকাশক Philadelphia: Saunders College Pub.. ISBN 0-03-029558-0.
External links
সম্পাদনা কৰক- "Fraction, arithmetical". The Online Encyclopaedia of Mathematics.
- Weisstein, Eric W., "Fraction" মেথৱৰ্ল্ডৰ পৰা.
- "Fraction". Encyclopedia Britannica.
- "Fraction (mathematics)". Citizendium.
- "Fraction". PlanetMath. Archived from the original on 2011-10-11. Retrieved 2012-12-28.