বৈদ্যুতিক ক্ষেত্ৰ
বৈদ্যুতিক ক্ষেত্ৰ হৈছে এখন ভেক্টৰ ক্ষেত্ৰ, য'ৰ প্ৰত্যেক বিন্দুত প্ৰতি একক আধানে লাভ কৰা কুলম্ব বল সংযুক্ত হৈ থাকে[1]। বৈদ্যুতিক আধানৰ দ্বাৰা বৈদ্যুতিক ক্ষেত্ৰৰ সৃষ্টি হয় আৰু পৰিৱৰ্ত্তিত চুম্বকীয় ক্ষেত্ৰৰ দ্বাৰা ইয়াক আৱেশকৰণ কৰিব পৰা যায়। বৈদ্যুতিক ক্ষেত্ৰ আৰু চুম্বকীয় ক্ষেত্ৰ লগ হৈ বিদ্যুৎচুম্বকীয় ক্ষেত্ৰৰ গঠন হয়।
সংজ্ঞা
সম্পাদনা কৰককোনো এক বিন্দুত বৈদ্যুতিক ক্ষেত্ৰ হৈছে বিদ্যুৎচুম্বকীয় বল যেনে লৰেঞ্জ বলৰ দ্বাৰা সেই বিন্দুত স্থিত কোনো একক আধানৰ ওপৰত প্ৰযোজ্য বল । আধানযুক্ত কণাই লাভ কৰা বল
ইয়াৰ এছ আই একক হৈছে নিউটন প্ৰতি কুলম্ব বা ভল্ট প্ৰতি মিটাৰ আৰু মাত্ৰা হৈছে kg⋅m⋅s−3⋅A−1
বৈদ্যুতিক ক্ষেত্ৰৰ উৎস
সম্পাদনা কৰককাৰণ আৰু ব্যাখ্যা
সম্পাদনা কৰকবৈদ্যুতিক ক্ষেত্ৰ বৈদ্যুতিক আধানৰ কাৰণে অথবা পৰিৱৰ্ত্তিত চুম্বকীয় ক্ষেত্ৰৰ বাবে সৃষ্টি হয় । প্ৰথম কাৰণটো গজৰ সূত্ৰ অনুসাৰে আৰু পাছৰ কাৰণটো ফেৰাডেৰ আৱেশৰ সূত্ৰ অনুসৰি ব্যাখ্যা কৰা হয়। যিহেতু চুম্বকীয় ক্ষেত্ৰও বৈদ্যুতিক ক্ষেত্ৰৰ ফলন হিচাপে ব্যাখ্যা কৰা হয় গতিকে দুইখন ক্ষেত্ৰৰ সমীকৰণ সংযুক্ত কৰি মেক্সৱেলৰ সমীকৰণ গঠিত হৈছে যিয়ে দুইখন ক্ষেত্ৰক আধান আৰু প্ৰৱাহৰ ফলন হিচাপে ব্যাখ্যা কৰিছে।
স্থিত অৱস্থাত( স্থিত আধান আৰু প্ৰৱাহ), মেক্সৱেল-ফেৰাডে আৱেশ ক্ৰিয়া নাইকিয়া হৈ পৰে। এই দুটি সমীকৰণ ( গজৰ সূত্ৰ( ) আৰু আৱেশবিহীন ফেৰাডেৰ সূত্ৰ( ) ) একেলগ কৰিলে কুলম্বৰ সূত্ৰৰ সমতুল্য হয়, য'ত হৈছে আধানৰ ঘনত্ব ( charge density )। হৈছে শূন্যস্থানৰ প্ৰৱেশ্যতা।
অধ্যাৰোপণ সূত্ৰ
সম্পাদনা কৰকবৈদ্যুতিক ক্ষেত্ৰই অধ্যাৰোপণৰ সূত্ৰ মানি চলে, কাৰণ মেক্সৱেলৰ সূত্ৰসমূহ ৰৈখিক। ফলস্বৰূপে, আৰু আধানৰ বিতৰণৰ পৰা সৃষ্ট দুখন ( আৰু ) বৈদ্যুতিক ক্ষেত্ৰই বৈদ্যুতিক ক্ষেত্ৰৰ সৃষ্টি কৰাব।
এই সূত্ৰৰ সহায়ত অসংখ্য বিন্দু আধানৰ বৈদ্যুতিক ক্ষেত্ৰৰ জোখ ল'বলৈ সুবিধা হয়। যদি হৈছে স্থিত আধান আৰু হৈছে প্ৰৱাহৰ অনুপস্থিতিত স্থান, তেন্তে অধ্যাৰোপণ সূত্ৰৰ দ্বাৰা প্ৰমাণ কৰিব পাৰি যে মুঠ বৈদ্যুতিক ক্ষেত্ৰ হ'ব প্ৰত্যেকটো কণাৰ দ্বাৰা সৃষ্ট ক্ষেত্ৰৰ যোগফল।
স্থিতিবিদ্যুৎ ক্ষেত্ৰ
সম্পাদনা কৰকস্থিতিবিদ্যুৎ ক্ষেত্ৰ সময় সাপেক্ষে পৰিৱৰ্তনশীল নহয় আৰু আধান আৰু প্ৰৱাহ স্থিৰাৱস্থাত থাকে। এইক্ষেত্ৰত কুলম্বৰ সূত্ৰই ক্ষেত্ৰখন ব্যাখ্যা কৰিব পাৰে।
- ↑ Richard Feynman (1970). The Feynman Lectures on Physics Vol II. Addison Wesley Longman. ISBN 978-0-201-02115-8. http://www.feynmanlectures.caltech.edu/II_01.html.